The Crablab
The Stein Lab
Neuroscience at Illinois State University
About Us
We study fundamental questions in Neuroscience. Questions like how neuronal activity can withstand different environmental conditions, and how neuromodulators alter neuronal function and processing. We are expert electrophysiologists, and combine experimental and theoretical approaches in our research.
Watch the Youtube video about our research or visit our Youtube channel
The Stein lab is a member of the School of Biological Sciences at Illinois State University in Normal, Illinois. We are located in the Science Laboratory Building (SLB 241).
Watch the Youtube video about our research or visit our Youtube channel
The Stein lab is a member of the School of Biological Sciences at Illinois State University in Normal, Illinois. We are located in the Science Laboratory Building (SLB 241).
Top: Mason Sanford, Charlotte Steiger, Lily Whittington, Rachel Mirman, Allison Harris
Bottom: Kyle Clark, Mackenzie Seymour, Pedro Galvan, Kristen Lane, Ella Nelson, Grace Crowe, Wolfgang Stein
Bottom: Kyle Clark, Mackenzie Seymour, Pedro Galvan, Kristen Lane, Ella Nelson, Grace Crowe, Wolfgang Stein
Our Work
We are studying the mechanisms that allow neurons to generate activity that is robust against perturbations. We are particularly interested in how neurons deal with changing body conditions and environmental influences. Climate-change-driven temperature changes, for example, affect the nervous systems of billions of animals, and hyperthermia and fever can severely damage the human brain. Surprisingly, we know very little about how the nervous system can respond to detrimental temperature changes and how it may remain functional when it heats up.
One focus of our research is on neuromodulators that are released in the nervous system, like neuropeptides or monoamines, and how they allow neurons to continue to function during temperature perturbations. A second focus is on how sensory signals are processed in the nervous system, and how they affect neuronal activity.
We take advantage of the well-studied central pattern generators of different crab and crayfish species to achieve an evolutionary perspective of these questions and to extract general mechanisms that help us understand neuronal responses to environmental stimuli. Because crustacean neurons are comparatively large, are exposed to many environmental influences, and have a known connectome, the same neurons and circuits can also be identified in many different species, which allows evolutionary comparisons. Importantly, neurons, networks, and their modulatory systems continue to function outside of the animal, and can be kept alive for many days ex-vivo. This allows us to study the cellular and network effects of varying environmental and paracrine conditions in great detail.
Keywords: Neuromodulation, central pattern generator, sensorimotor, stomatogastric ganglion, optical imaging, electrophysiology, Cancer pagurus, Procambarus virginalis, marbled crayfish.
One focus of our research is on neuromodulators that are released in the nervous system, like neuropeptides or monoamines, and how they allow neurons to continue to function during temperature perturbations. A second focus is on how sensory signals are processed in the nervous system, and how they affect neuronal activity.
We take advantage of the well-studied central pattern generators of different crab and crayfish species to achieve an evolutionary perspective of these questions and to extract general mechanisms that help us understand neuronal responses to environmental stimuli. Because crustacean neurons are comparatively large, are exposed to many environmental influences, and have a known connectome, the same neurons and circuits can also be identified in many different species, which allows evolutionary comparisons. Importantly, neurons, networks, and their modulatory systems continue to function outside of the animal, and can be kept alive for many days ex-vivo. This allows us to study the cellular and network effects of varying environmental and paracrine conditions in great detail.
Keywords: Neuromodulation, central pattern generator, sensorimotor, stomatogastric ganglion, optical imaging, electrophysiology, Cancer pagurus, Procambarus virginalis, marbled crayfish.
Meet the Team
We are accepting new MS and PhD students!
Undergraduates (alphabetically by last name):
Kyle Clark, Grace Crow, Kristen Lane, Ella Nelson, Charlotte Steiger, Lily Whittington, Rachel Mirman, Pedro Galvan
Kyle Clark, Grace Crow, Kristen Lane, Ella Nelson, Charlotte Steiger, Lily Whittington, Rachel Mirman, Pedro Galvan
Alumni
Andrés Vidal Gadea (Co-PI), Casey Gahrs, Abigail Benson, Wolfgang Stein (Co-PI)
and many more, including Carmen Smarandache-Wellmann, Ulrike Hedrich, Nelly Daur, Stefanie Heigele, Jessica Ausborn, Astrid Munder, Stefan Putz, Yolanda Braun, Stephanie Preuss, Christina Eberle (Young), Menalie Nickmann, Martyna Grabowska, Kristin Gebauer, Raimund Jung, Caleb Hudspath, Andrew Hoang, Harsh Patel.
Publications
A full list of our publications can be found at Pubmed (http://goo.gl/gcWjhe ) and Google Scholar. and at Researchgate ( https://www.researchgate.net/profile/Wolfgang_Stein ). Research gate also hosts the full pdf versions.
PUBLICATIONS (PEER REVIEWED AND PREPRINTS). (See below for reviews and essays).
65. Stein, W., Städele, C. (2024). Neuromodulator-induced temperature robustness in a motor pattern: a comparative study between two decapod crustaceans. Journal of Experimental Biology, 227(18). https://journals.biologists.com/jeb/article/227/18/jeb247266/362072
64. Stein, W., Torres, G., Gimenez, L., Espinosa-Novo, N., Geissel, J. P., Vidal-Gadea, A., Harzsch, S. (2023). Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Frontiers in Cellular Neuroscience, 17:1263591. doi: 10.3389/fncel.2023.1263591. https://www.frontiersin.org/articles/10.3389/fncel.2023.1263591/full
63. Komandur, A., Fazyl, A., Stein, W., Vidal-Gadea, A. (2023). The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. microPublication Biology, 10.17912/micropub.biology.001085. https://www.micropublication.org/journals/biology/micropub-biology-001085
62. Stein, W. (2023). Editorial: The fruit fly, Drosophila, as a tool to unravel locomotor circuits. Frontiers in Neural Circuits (17), 1267789.. https://www.frontiersin.org/articles/10.3389/fncir.2023.1267789/full
61. Gonzalez, J., Follmann, R., Rosa, E., Stein, W. (2023). Computational and Experimental Modulation of a Noisy Chaotic Neuronal System. Chaos (33), 033109.
60. Städele, C., Stein, W. (2022) Neuromodulation enables temperature robustness and coupling between fast and slow oscillator circuits in Cancer borealis. Frontiers in Cellular Neuroscience, accepted. Also available on bioRxiv 2021.11.04.467352; doi: https://doi.org/10.1101/2021.11.04.467352
59. Stein, W., DeMaegd, M. L., Benson, A. M., Roy, R. S., & Vidal-Gadea, A. G. (2022). Combining old and new tricks: The study of genes, neurons, and behavior in crayfish. Frontiers in Physiology, 1329.
58. Stein, W. Harris, A.L. (2022) Interneuronal dynamics facilitate the initiation of cortical spreading depression. Journal of Computational Neuroscience, accepted. Also available on bioRxiv 2021.04.25.441350; doi: https://doi.org/10.1101/2021.04.25.441350
57. Stein, W., DeMaegd, M.L., Braun, L.Y., Vidal-Gadea, A.G., Harris, A.L., Städele, C. (2022) The dynamic range of voltage-dependent gap junction signaling is maintained by Ih-induced membrane potential depolarization. Journal of Neurophysioloy. 2022 Feb 16. doi: 10.1152/jn.00545.2021. Epub ahead of print. PMID: 35171723.
56. DeMaegd, M. L. & Stein, W. (2021) Neuropeptide Modulation Increases Dendritic Electrical Spread to Restore Neuronal Activity Disrupted by Temperature. Journal of Neuroscience 8 September 2021, 41 (36) 7607-7622; DOI: 10.1523/JNEUROSCI.0101-21.2021
55. Stein, W. & Harris, A.L. (2021) Interneuronal dynamics facilitate the initiation of cortical spreading depression. bioRxiv 2021.04.25.441350; doi: https://doi.org/10.1101/2021.04.25.441350
54. Stein, W., Talasu, S., Vidal-Gadea, A., & DeMaegd, M. L. (2020) Physiologists turned Geneticists: Identifying transcripts and genes for neuronal function in the Marbled Crayfish, Procambarus virginalis. The Journal of Undergraduate Neuroscience Education, Fall 2020, 19(1):A36-A51. https://www.funjournal.org/wp-content/uploads/2021/01/june-19-36.pdf?x89760
53. Stein, W. & Harzsch, S. (2020). The Neurobiology of Ocean Change - insights from decapod crustaceans. Zoology. 125887. 10.1016/j.zool.2020.125887. https://www.sciencedirect.com/science/article/pii/S094420062030146X
52. DeMaegd ML, Stein W (2020) Temperature-robust activity patterns arise from coordinated axonal Sodium channel properties. PLOS Computational Biology 16(7): e1008057. https://doi.org/10.1371/journal.pcbi.1008057
51. Bainbridge, C., McDonald, J., Ahlert, A., Benefield, Z., Stein, W. & AG Vidal-Gadea* (2019) Unbiased analysis of C. elegans behavior reveals the use of distinct turning strategies during magnetic Orientation. bioRxiv 688408; doi: https://doi.org/10.1101/688408.
50. Hughes, K.J., Rodriguez, A. Flatt, K. M., Ray, S., Schuler, A., Rodemoyer, B., Veerappan, V., Cuciarone, K., Kullman, A., Lim, C., Gutta, N., Vemuri, S., Andriulis, V., Niswonger, D., Barickman, L., Stein, W., Singhvi, A., Schroeder, N. E. & Vidal-Gadea, A. G. (2019). Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. PNAS, Feb 2019, 201811379; DOI: 10.1073/pnas.181137911. https://www.pnas.org/content/early/2019/02/11/1811379116.short
49. Follmann, R., Goldsmith, C.J. & Stein, W. (2018). Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biology 16(10), e2004527. https://doi.org/10.1371/journal.pbio.2004527
48. Städele, C., DeMaegd, M. L. and Stein, W.* (2018). State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials. eNeuro:.0283-18.2018; DOI: 10.1523/ENEURO.0283-18.2018. https://t.co/sXAQvEAp7U
A preprint of this study was previously on BioRXiV: Städele, C. & Stein, W. (2015). Control of sensory ectopic spike initiation by descending modulatory projection neurons. bioRxiv doi: http://dx.doi.org/10.1101/025114
47. DeMaegd, M. & Stein, W. (2018) Long-Distance Modulation of Sensory Encoding via Axonal Neuromodulation. In: Sensory Nervous System. Ed: Thomas Heinbockel. Rijeka: IntechOpen. Doi: 10.5772/intechopen.74647. https://www.intechopen.com/books/sensory-nervous-system/long-distance-modulation-of-sensory-encoding-via-axonal-neuromodulation
46. Zare, A., Schipper, S., Stein, W., Temel, Y., van Koeveringe, G & Jahanshahibd, A. (2018) Electrophysiological responses of the ventrolateral periaqueductal gray matter neurons towards peripheral bladder stimulation. Brain Research Bulletin 142: 116-121. https://doi.org/10.1016/j.brainresbull.2018.07.009
45. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy J. & Lyko, F (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology & Evolution (2018) doi:10.1038/s41559-018-0467-9
https://www.nature.com/articles/s41559-018-0467-9
44. Stein, W. (2017). Stomatogastric Nervous System. Oxford Research Encyclopedia of Neuroscience. http://neuroscience.oxfordre.com/view/10.1093/acrefore/9780190264086.001.0001/acrefore-9780190264086-e-153. DOI: 10.1093/acrefore/9780190264086.013.153. Author's version: Click here.
43. Städele, C., DeMaegd, M. L. and Stein, W. (2017). Extracellular Axon Stimulation. Bio-protocol 7(5): e2151. DOI: 10.21769/BioProtoc.2151; Full Text
42. DeMaegd, M. L., Städele, C. & Stein, W. (2017). Axonal Conduction Velocity Measurement. Bio-protocol 7(5): e2152. DOI: 10.21769/BioProtoc.2152; Full Text
41. Follmann R, Goldsmith CJ, Stein W (2016). Spatial Distribution of Intermingling Pools of Projection Neurons with Distinct Targets: A 3-dimensional Analysis of the Commissural Ganglia in Cancer borealis. J Comp Neurol: 525(8):1827-1843, doi: 10.1002/cne.24161.
Click here for an author's version of our manuscript
40. Städele, C. & Stein, W. (2016) The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron. J Neurosci. 36(25): 6718-6731; doi: 10.1523/JNEUROSCI.2753-15.2016 http://www.jneurosci.org/content/36/25/6718.short
39. Yarger, A.M. & Stein W. (2015) Sources and range of long-term variability of rhythmicmotor patterns in vivo. .J Exp Biol. 218, 3950-3961 doi:10.1242/jeb.126581
Click here for an author's copy (in case the above link has expired).
38. Städele, C., Heigele, S. & Stein, W. (2015) Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input. PLoS Biol 13(9):e1002265. doi: 10.1371/journal.pbio.1002265
37. Follmann, R., Rosa, E. & Stein, W. (2015). Dynamics of signal propagation and collision in axons. Phys. Rev. E 92, 032707. http://dx.doi.org/10.1103/PhysRevE.92.032707
36. Rosa, E., Skilling, Q.M., & Stein, W. (2015). Effects of Reciprocal Inhibitory Coupling in Model Neurons. Biosystems 127: 73–83.
35. Goldsmith, J.G., Staedele, C. & Stein, W.* (2014). Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems. PLoS ONE 9(7): e103459. doi:10.1371/journal.pone.0103459
34. Stein, W.* & Diehl, F. (2014). An in vivo Assay for Simultaneous Monitoring of Neuronal Activity and Behavioral Output in the Stomatogastric Nervous System of Decapod Crustaceans. Faculty Publications – Biological Sciences. Paper 28. http://ir.library.illinoisstate.edu/fpbiosci/28
33. Soofi, W, Goeritz, M.L., Kispersky, T.J., Prinz, A.A., Marder,E. & Stein, W.* (2014). Phase maintenance in a rhythmic motor pattern during temperature changes in vivo. J Neurophysiol 111: 2603–2613.
32. Preuss, S. & Stein, W.* (2013). Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity. PLoS ONE 8(10): e75678. doi:10.1371/journal.pone.0075678.
31. Diehl F., White R.S., Stein W. & Nusbaum M.P. (2013). Motor circuit-specific burst patterns drive different muscle and behavior patterns. J Neurosci. 33(29):12013-29.
30. Daur N., Diehl F., Mader W. & Stein W. (2012). The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions. Front Comput Neurosci. 14;6:13.
29. Staedele C., Andras P. & Stein W.* (2012). Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging. J Neurosci Methods. 203(1):78-88.
28. Hedrich, U. B. S., Diehl, F. & Stein, W.* (2011). Gastric and pyloric motor pattern control by a modulatory projection neuron in the intact crab Cancer pagurus. J Neurophysiol, 105(4), 1671–1680.
27. Stein, W., Städele, C. & Andras, P.* (2011) Optical imaging of neurons in the crab stomatogastric ganglion with voltage-sensitive dyes. J. vis. Exp., 49; http://www.jove.com/details.php?id=2567; doi: 10.3791/2567.
26. Stein, W., Städele, C. & Andras, P.* (2011) Single-sweep voltage sensitive dye imaging of interacting identified neurons. J. Neurosci. Methods, 194(2), 224–234..
25. Stein, W. & Andras, P. * (2010) The effect of a fluorescent voltage-sensitive dye on neurons of the crab stomatogastric ganglion. J. Neurosci. Methods. 188(2):290-294.
24. Hedrich, U.B., Smarandache, C.R. & Stein, W.* (2009) Differential activation of projection neurons by two sensory pathways contributes to motor pattern selection. J. Neurophys. 102(5): 2866-2879.
23. Daur, N., Nadim, F. & Stein, W.* (2009) Regulation of motor patterns by the central spike-initiation zone of a sensory neuron. Europ. J. Neurosci.,30(5): 808-822.
22. Ausborn, J., Wolf, H. & Stein, W.* (2009) The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern. J. Comput. Neurosci. 27(2):245-257.
Faculty of 1000 Biology: evaluations for Ausborn J et al J Comput Neurosci 2009 Mar http://www.f1000biology.com/article/id/1162543/evaluation
21. Hedrich, U.B.S & Stein, W.* (2008) Characterization of a descending pathway: Activation and effects on motor patterns in the brachyuran crustacean stomatogastric nervous system. J. Exp. Biol., 211:2624-2637.
20. Smarandache, C.R., Daur, N., Hedrich, U.B.S & Stein, W.* (2008) Regulation of motor pattern frequency by reversals in proprioceptive feedback. Europ. J. Neurosci., 28:460-474.
19. Stein, W.*, Straub, O., Ausborn, J., Mader, W. & Wolf, W. (2008) Motor pattern selection by combinatorial code of interneuronal pathways. J. Comput. Neurosci. 25(3):543-61.
18. Bässler, U., Wolf, H. & Stein, W.* (2007) Functional recovery following manipulation of muscles and sense organs in the stick insect leg. J. Comp. Physiol. A., 193:1151-68.
17. Stein, W., DeLong, N., Wood, D. & Nusbaum, M.P. (2007) Divergent Cotransmitter Actions Underlie Motor Pattern Activation by a Modulatory Projection Neuron. Europ. J. Neurosci., 26: 1148–1165.
16. Ausborn, J., Stein, W.* & Wolf, H. (2007) Frequency Control of Motor Pattern by Negative Sensory Feedback. J. Neurosci., 27: 9319-9328..
15. Smarandache, C.R. & Stein, W.* (2007) Sensory-induced modification of two motor patterns in the crab, Cancer pagurus. J. Exp. Biol., 210: 2912-2922.
14. Stein, W.*, Büschges, A. & Bässler, U. (2006) Intersegmental transfer of sensory signals in the stick insect leg muscle control system. J. Neurobiol. 66(11):1253-1269.
13. Stein, W.*, Smarandache, C.R., Nickmann, M. & Hedrich, U.B.S. (2006) Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction. J. Exp. Biol. 209: 1285-1300.
12. Stein, W.*, Eberle, C.C., & Hedrich, U.B.S. (2005) Motor pattern selection by nitric oxide in the stomatogastric nervous system of the crab. Europ. J. Neurosci. 21(10): 2767-2781.
11. Stein, W.* & Ausborn, J. (2004) Analog modulation of digital computation in nerve cells: Simulating the stomatogastric nervous system of the crab. in: Modelling and Simulation '2004 (Bobeanu C., ed), pp.148-152. Ghent, Belgium: Eurosis-ETI.
10. Straub, O., Mader, W., Ausborn, J & Stein, W.* (2004) Motor output variability in a joint control system - a simulation study. in: Modelling and Simulation '2004 (Bobeanu C., ed), pp.135-139. Ghent, Belgium: Eurosis-ETI.
9. Christie, A.E., Stein, W., Quinlan, J.E., Beenhakker, M.P., Marder, E. & Nusbaum, M.P. (2004) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 469:153-169.
8. Wood, D.E., Stein, W. & Nusbaum, M.P. (2000) Projection Neurons with Shared Cotransmitters Elicit Different Motor Patterns from the Same Neural Circuit. J. Neurosci. 20(23):8943-8953.
7. Schmitz, J. & Stein, W. (2000) Convergence of Load and Movement Information onto Leg Motoneurons in Insects. J. Neurobiol. 43: 424–436.
6. Stein, W.* & Schmitz, J. (1999) Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. J.
Neurophysiol. 83: 512–514.
5. Sauer, A.E. & Stein, W. (1999) Sensorimotor pathways processing vibratory signals from the femoral chordotonal organ of the stick insect. J Comp. Physiol. A, 185: 21-31.
4. Stein, W.* & Sauer, A.E (1999) Physiology of vibration sensitive afferents in the mesothoracic femoral chordotonal organ of the stick insect Cuniculina impigra. J. Comp. Physiol. A, 184: 253-263.
3. Stein, W.* & Sauer, A.E (1998) Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. J. Comp. Physiol. A 183(4): 489-501.
2. Sauer, A.E., Büschges, A., & Stein, W. (1997) The role of presynaptic afferent inhibition in tuning sensorimotor pathways in an insect joint-control network. J. Neurobiol. 32: 359-376.
1. Bässler, U. & Stein, W. (1996) Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system. J. Exp. Biol. 199: 2185-2198.
PUBLICATIONS (ESSAYS AND REVIEWS)
1.Stein, W.*, Städele, C.& Smarandache-Wellmann, C.R. (2016) Evolutionary aspects of motor control and coordination: the central pattern generators in the crustacean stomatogastric and swimmeret systems. In: Structure and Evolution of Invertebrate Nervous Systems (Oxford University Press), eds: Schmidt-Rhaesa,A., Harzsch, S. & Purschke, G. ISBN: 9780199682201.
Click here for an author's version of this paper
2. Stein, W.* (2013) Sensory Input to Central Pattern Generators. In: Springer Encyclopedia of Computational Neuroscience. Jaeger, D., Jung, R. (Eds). http://www.springerreference.com/docs/html/chapterdbid/348530.html
3. Stein, W.* (2009) Modulation of stomatogastric rhythms. J. comp. Physiol. A. DOI: 10.1007/s00359-009-0483-y.
4. Stein, W.* & Ausborn, J. (2008) Wenn das Ganze mehr als die Summe seiner Teile ist - Der Einsatz von Computermodellen zur Detektion emergenter Eigenschaften. Bioforum 5: 49-51.
5. Stein, W.* (2006) Die Verarbeitung sensorischer Signale im Nervensystem. Ulm University. Habilitation. http://d-nb.info/982225172
PUBLICATIONS (PEER REVIEWED AND PREPRINTS). (See below for reviews and essays).
65. Stein, W., Städele, C. (2024). Neuromodulator-induced temperature robustness in a motor pattern: a comparative study between two decapod crustaceans. Journal of Experimental Biology, 227(18). https://journals.biologists.com/jeb/article/227/18/jeb247266/362072
64. Stein, W., Torres, G., Gimenez, L., Espinosa-Novo, N., Geissel, J. P., Vidal-Gadea, A., Harzsch, S. (2023). Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Frontiers in Cellular Neuroscience, 17:1263591. doi: 10.3389/fncel.2023.1263591. https://www.frontiersin.org/articles/10.3389/fncel.2023.1263591/full
63. Komandur, A., Fazyl, A., Stein, W., Vidal-Gadea, A. (2023). The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. microPublication Biology, 10.17912/micropub.biology.001085. https://www.micropublication.org/journals/biology/micropub-biology-001085
62. Stein, W. (2023). Editorial: The fruit fly, Drosophila, as a tool to unravel locomotor circuits. Frontiers in Neural Circuits (17), 1267789.. https://www.frontiersin.org/articles/10.3389/fncir.2023.1267789/full
61. Gonzalez, J., Follmann, R., Rosa, E., Stein, W. (2023). Computational and Experimental Modulation of a Noisy Chaotic Neuronal System. Chaos (33), 033109.
60. Städele, C., Stein, W. (2022) Neuromodulation enables temperature robustness and coupling between fast and slow oscillator circuits in Cancer borealis. Frontiers in Cellular Neuroscience, accepted. Also available on bioRxiv 2021.11.04.467352; doi: https://doi.org/10.1101/2021.11.04.467352
59. Stein, W., DeMaegd, M. L., Benson, A. M., Roy, R. S., & Vidal-Gadea, A. G. (2022). Combining old and new tricks: The study of genes, neurons, and behavior in crayfish. Frontiers in Physiology, 1329.
58. Stein, W. Harris, A.L. (2022) Interneuronal dynamics facilitate the initiation of cortical spreading depression. Journal of Computational Neuroscience, accepted. Also available on bioRxiv 2021.04.25.441350; doi: https://doi.org/10.1101/2021.04.25.441350
57. Stein, W., DeMaegd, M.L., Braun, L.Y., Vidal-Gadea, A.G., Harris, A.L., Städele, C. (2022) The dynamic range of voltage-dependent gap junction signaling is maintained by Ih-induced membrane potential depolarization. Journal of Neurophysioloy. 2022 Feb 16. doi: 10.1152/jn.00545.2021. Epub ahead of print. PMID: 35171723.
56. DeMaegd, M. L. & Stein, W. (2021) Neuropeptide Modulation Increases Dendritic Electrical Spread to Restore Neuronal Activity Disrupted by Temperature. Journal of Neuroscience 8 September 2021, 41 (36) 7607-7622; DOI: 10.1523/JNEUROSCI.0101-21.2021
55. Stein, W. & Harris, A.L. (2021) Interneuronal dynamics facilitate the initiation of cortical spreading depression. bioRxiv 2021.04.25.441350; doi: https://doi.org/10.1101/2021.04.25.441350
54. Stein, W., Talasu, S., Vidal-Gadea, A., & DeMaegd, M. L. (2020) Physiologists turned Geneticists: Identifying transcripts and genes for neuronal function in the Marbled Crayfish, Procambarus virginalis. The Journal of Undergraduate Neuroscience Education, Fall 2020, 19(1):A36-A51. https://www.funjournal.org/wp-content/uploads/2021/01/june-19-36.pdf?x89760
53. Stein, W. & Harzsch, S. (2020). The Neurobiology of Ocean Change - insights from decapod crustaceans. Zoology. 125887. 10.1016/j.zool.2020.125887. https://www.sciencedirect.com/science/article/pii/S094420062030146X
52. DeMaegd ML, Stein W (2020) Temperature-robust activity patterns arise from coordinated axonal Sodium channel properties. PLOS Computational Biology 16(7): e1008057. https://doi.org/10.1371/journal.pcbi.1008057
51. Bainbridge, C., McDonald, J., Ahlert, A., Benefield, Z., Stein, W. & AG Vidal-Gadea* (2019) Unbiased analysis of C. elegans behavior reveals the use of distinct turning strategies during magnetic Orientation. bioRxiv 688408; doi: https://doi.org/10.1101/688408.
50. Hughes, K.J., Rodriguez, A. Flatt, K. M., Ray, S., Schuler, A., Rodemoyer, B., Veerappan, V., Cuciarone, K., Kullman, A., Lim, C., Gutta, N., Vemuri, S., Andriulis, V., Niswonger, D., Barickman, L., Stein, W., Singhvi, A., Schroeder, N. E. & Vidal-Gadea, A. G. (2019). Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. PNAS, Feb 2019, 201811379; DOI: 10.1073/pnas.181137911. https://www.pnas.org/content/early/2019/02/11/1811379116.short
49. Follmann, R., Goldsmith, C.J. & Stein, W. (2018). Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biology 16(10), e2004527. https://doi.org/10.1371/journal.pbio.2004527
48. Städele, C., DeMaegd, M. L. and Stein, W.* (2018). State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials. eNeuro:.0283-18.2018; DOI: 10.1523/ENEURO.0283-18.2018. https://t.co/sXAQvEAp7U
A preprint of this study was previously on BioRXiV: Städele, C. & Stein, W. (2015). Control of sensory ectopic spike initiation by descending modulatory projection neurons. bioRxiv doi: http://dx.doi.org/10.1101/025114
47. DeMaegd, M. & Stein, W. (2018) Long-Distance Modulation of Sensory Encoding via Axonal Neuromodulation. In: Sensory Nervous System. Ed: Thomas Heinbockel. Rijeka: IntechOpen. Doi: 10.5772/intechopen.74647. https://www.intechopen.com/books/sensory-nervous-system/long-distance-modulation-of-sensory-encoding-via-axonal-neuromodulation
46. Zare, A., Schipper, S., Stein, W., Temel, Y., van Koeveringe, G & Jahanshahibd, A. (2018) Electrophysiological responses of the ventrolateral periaqueductal gray matter neurons towards peripheral bladder stimulation. Brain Research Bulletin 142: 116-121. https://doi.org/10.1016/j.brainresbull.2018.07.009
45. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy J. & Lyko, F (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology & Evolution (2018) doi:10.1038/s41559-018-0467-9
https://www.nature.com/articles/s41559-018-0467-9
44. Stein, W. (2017). Stomatogastric Nervous System. Oxford Research Encyclopedia of Neuroscience. http://neuroscience.oxfordre.com/view/10.1093/acrefore/9780190264086.001.0001/acrefore-9780190264086-e-153. DOI: 10.1093/acrefore/9780190264086.013.153. Author's version: Click here.
43. Städele, C., DeMaegd, M. L. and Stein, W. (2017). Extracellular Axon Stimulation. Bio-protocol 7(5): e2151. DOI: 10.21769/BioProtoc.2151; Full Text
42. DeMaegd, M. L., Städele, C. & Stein, W. (2017). Axonal Conduction Velocity Measurement. Bio-protocol 7(5): e2152. DOI: 10.21769/BioProtoc.2152; Full Text
41. Follmann R, Goldsmith CJ, Stein W (2016). Spatial Distribution of Intermingling Pools of Projection Neurons with Distinct Targets: A 3-dimensional Analysis of the Commissural Ganglia in Cancer borealis. J Comp Neurol: 525(8):1827-1843, doi: 10.1002/cne.24161.
Click here for an author's version of our manuscript
40. Städele, C. & Stein, W. (2016) The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron. J Neurosci. 36(25): 6718-6731; doi: 10.1523/JNEUROSCI.2753-15.2016 http://www.jneurosci.org/content/36/25/6718.short
39. Yarger, A.M. & Stein W. (2015) Sources and range of long-term variability of rhythmicmotor patterns in vivo. .J Exp Biol. 218, 3950-3961 doi:10.1242/jeb.126581
Click here for an author's copy (in case the above link has expired).
38. Städele, C., Heigele, S. & Stein, W. (2015) Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input. PLoS Biol 13(9):e1002265. doi: 10.1371/journal.pbio.1002265
37. Follmann, R., Rosa, E. & Stein, W. (2015). Dynamics of signal propagation and collision in axons. Phys. Rev. E 92, 032707. http://dx.doi.org/10.1103/PhysRevE.92.032707
36. Rosa, E., Skilling, Q.M., & Stein, W. (2015). Effects of Reciprocal Inhibitory Coupling in Model Neurons. Biosystems 127: 73–83.
35. Goldsmith, J.G., Staedele, C. & Stein, W.* (2014). Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems. PLoS ONE 9(7): e103459. doi:10.1371/journal.pone.0103459
34. Stein, W.* & Diehl, F. (2014). An in vivo Assay for Simultaneous Monitoring of Neuronal Activity and Behavioral Output in the Stomatogastric Nervous System of Decapod Crustaceans. Faculty Publications – Biological Sciences. Paper 28. http://ir.library.illinoisstate.edu/fpbiosci/28
33. Soofi, W, Goeritz, M.L., Kispersky, T.J., Prinz, A.A., Marder,E. & Stein, W.* (2014). Phase maintenance in a rhythmic motor pattern during temperature changes in vivo. J Neurophysiol 111: 2603–2613.
32. Preuss, S. & Stein, W.* (2013). Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity. PLoS ONE 8(10): e75678. doi:10.1371/journal.pone.0075678.
31. Diehl F., White R.S., Stein W. & Nusbaum M.P. (2013). Motor circuit-specific burst patterns drive different muscle and behavior patterns. J Neurosci. 33(29):12013-29.
30. Daur N., Diehl F., Mader W. & Stein W. (2012). The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions. Front Comput Neurosci. 14;6:13.
29. Staedele C., Andras P. & Stein W.* (2012). Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging. J Neurosci Methods. 203(1):78-88.
28. Hedrich, U. B. S., Diehl, F. & Stein, W.* (2011). Gastric and pyloric motor pattern control by a modulatory projection neuron in the intact crab Cancer pagurus. J Neurophysiol, 105(4), 1671–1680.
27. Stein, W., Städele, C. & Andras, P.* (2011) Optical imaging of neurons in the crab stomatogastric ganglion with voltage-sensitive dyes. J. vis. Exp., 49; http://www.jove.com/details.php?id=2567; doi: 10.3791/2567.
26. Stein, W., Städele, C. & Andras, P.* (2011) Single-sweep voltage sensitive dye imaging of interacting identified neurons. J. Neurosci. Methods, 194(2), 224–234..
25. Stein, W. & Andras, P. * (2010) The effect of a fluorescent voltage-sensitive dye on neurons of the crab stomatogastric ganglion. J. Neurosci. Methods. 188(2):290-294.
24. Hedrich, U.B., Smarandache, C.R. & Stein, W.* (2009) Differential activation of projection neurons by two sensory pathways contributes to motor pattern selection. J. Neurophys. 102(5): 2866-2879.
23. Daur, N., Nadim, F. & Stein, W.* (2009) Regulation of motor patterns by the central spike-initiation zone of a sensory neuron. Europ. J. Neurosci.,30(5): 808-822.
22. Ausborn, J., Wolf, H. & Stein, W.* (2009) The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern. J. Comput. Neurosci. 27(2):245-257.
Faculty of 1000 Biology: evaluations for Ausborn J et al J Comput Neurosci 2009 Mar http://www.f1000biology.com/article/id/1162543/evaluation
21. Hedrich, U.B.S & Stein, W.* (2008) Characterization of a descending pathway: Activation and effects on motor patterns in the brachyuran crustacean stomatogastric nervous system. J. Exp. Biol., 211:2624-2637.
20. Smarandache, C.R., Daur, N., Hedrich, U.B.S & Stein, W.* (2008) Regulation of motor pattern frequency by reversals in proprioceptive feedback. Europ. J. Neurosci., 28:460-474.
19. Stein, W.*, Straub, O., Ausborn, J., Mader, W. & Wolf, W. (2008) Motor pattern selection by combinatorial code of interneuronal pathways. J. Comput. Neurosci. 25(3):543-61.
18. Bässler, U., Wolf, H. & Stein, W.* (2007) Functional recovery following manipulation of muscles and sense organs in the stick insect leg. J. Comp. Physiol. A., 193:1151-68.
17. Stein, W., DeLong, N., Wood, D. & Nusbaum, M.P. (2007) Divergent Cotransmitter Actions Underlie Motor Pattern Activation by a Modulatory Projection Neuron. Europ. J. Neurosci., 26: 1148–1165.
16. Ausborn, J., Stein, W.* & Wolf, H. (2007) Frequency Control of Motor Pattern by Negative Sensory Feedback. J. Neurosci., 27: 9319-9328..
15. Smarandache, C.R. & Stein, W.* (2007) Sensory-induced modification of two motor patterns in the crab, Cancer pagurus. J. Exp. Biol., 210: 2912-2922.
14. Stein, W.*, Büschges, A. & Bässler, U. (2006) Intersegmental transfer of sensory signals in the stick insect leg muscle control system. J. Neurobiol. 66(11):1253-1269.
13. Stein, W.*, Smarandache, C.R., Nickmann, M. & Hedrich, U.B.S. (2006) Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction. J. Exp. Biol. 209: 1285-1300.
12. Stein, W.*, Eberle, C.C., & Hedrich, U.B.S. (2005) Motor pattern selection by nitric oxide in the stomatogastric nervous system of the crab. Europ. J. Neurosci. 21(10): 2767-2781.
11. Stein, W.* & Ausborn, J. (2004) Analog modulation of digital computation in nerve cells: Simulating the stomatogastric nervous system of the crab. in: Modelling and Simulation '2004 (Bobeanu C., ed), pp.148-152. Ghent, Belgium: Eurosis-ETI.
10. Straub, O., Mader, W., Ausborn, J & Stein, W.* (2004) Motor output variability in a joint control system - a simulation study. in: Modelling and Simulation '2004 (Bobeanu C., ed), pp.135-139. Ghent, Belgium: Eurosis-ETI.
9. Christie, A.E., Stein, W., Quinlan, J.E., Beenhakker, M.P., Marder, E. & Nusbaum, M.P. (2004) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J. Comp. Neurol. 469:153-169.
8. Wood, D.E., Stein, W. & Nusbaum, M.P. (2000) Projection Neurons with Shared Cotransmitters Elicit Different Motor Patterns from the Same Neural Circuit. J. Neurosci. 20(23):8943-8953.
7. Schmitz, J. & Stein, W. (2000) Convergence of Load and Movement Information onto Leg Motoneurons in Insects. J. Neurobiol. 43: 424–436.
6. Stein, W.* & Schmitz, J. (1999) Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. J.
Neurophysiol. 83: 512–514.
5. Sauer, A.E. & Stein, W. (1999) Sensorimotor pathways processing vibratory signals from the femoral chordotonal organ of the stick insect. J Comp. Physiol. A, 185: 21-31.
4. Stein, W.* & Sauer, A.E (1999) Physiology of vibration sensitive afferents in the mesothoracic femoral chordotonal organ of the stick insect Cuniculina impigra. J. Comp. Physiol. A, 184: 253-263.
3. Stein, W.* & Sauer, A.E (1998) Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. J. Comp. Physiol. A 183(4): 489-501.
2. Sauer, A.E., Büschges, A., & Stein, W. (1997) The role of presynaptic afferent inhibition in tuning sensorimotor pathways in an insect joint-control network. J. Neurobiol. 32: 359-376.
1. Bässler, U. & Stein, W. (1996) Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system. J. Exp. Biol. 199: 2185-2198.
PUBLICATIONS (ESSAYS AND REVIEWS)
1.Stein, W.*, Städele, C.& Smarandache-Wellmann, C.R. (2016) Evolutionary aspects of motor control and coordination: the central pattern generators in the crustacean stomatogastric and swimmeret systems. In: Structure and Evolution of Invertebrate Nervous Systems (Oxford University Press), eds: Schmidt-Rhaesa,A., Harzsch, S. & Purschke, G. ISBN: 9780199682201.
Click here for an author's version of this paper
2. Stein, W.* (2013) Sensory Input to Central Pattern Generators. In: Springer Encyclopedia of Computational Neuroscience. Jaeger, D., Jung, R. (Eds). http://www.springerreference.com/docs/html/chapterdbid/348530.html
3. Stein, W.* (2009) Modulation of stomatogastric rhythms. J. comp. Physiol. A. DOI: 10.1007/s00359-009-0483-y.
4. Stein, W.* & Ausborn, J. (2008) Wenn das Ganze mehr als die Summe seiner Teile ist - Der Einsatz von Computermodellen zur Detektion emergenter Eigenschaften. Bioforum 5: 49-51.
5. Stein, W.* (2006) Die Verarbeitung sensorischer Signale im Nervensystem. Ulm University. Habilitation. http://d-nb.info/982225172